Let $\mathcal{C}$ be a quasi-cyclic code of index $l(l\geq2)$. Let $G$ be the subgroup of the automorphism group of $\mathcal{C}$ generated by $\rho^l$ and the scalar multiplications of $\mathcal{C}$, where $\rho$ denotes the standard cyclic shift. In this paper, we find an explicit formula of orbits of $G$ on $\mathcal{C}\setminus \{\mathbf{0}\}$. Consequently, an explicit upper bound on the number of non-zero weights of $\mathcal{C}$ is immediately derived and a necessary and sufficient condition for codes meeting the bound is exhibited. In particular, we list some examples to show the bounds are tight. Our main result improves and generalizes some of the results in \cite{M2}.


翻译:Let\ mathcal{C}$(l\ geq2) $(l\ geq2) 的准周期代码。 请将$G$作为由$\\ mathcal{C} 美元产生的自动组合的分组, 以及$\\ mathcal{C} $(mathcal{C} $) 的天平倍数乘法。 $\ rho$ 表示标准周期转换。 在本文中, 我们发现一个明确的轨道公式, 以$\ mathcal{C_ setsminus\ mathb{0} $( g$) 为单位。 因此, 对非零重量的 $\ mathcal{C} $( $) 的数有一个明确的上下限, 并展示了满足约束值的代码的一个必要和充分的条件 。 特别是, 我们列出一些示例, 以显示界限很紧。 我们的主要结果改进并概括了 Cite{M2} 中的某些结果 。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员