This study proposes Interaction Tensor SHAP (IT-SHAP), a tensor algebraic formulation of the Shapley Taylor Interaction Index (STII) that makes its computational structure explicit. STII extends the Shapley value to higher order interactions, but its exponential combinatorial definition makes direct computation intractable at scale. We reformulate STII as a linear transformation acting on a value function and derive an explicit algebraic representation of its weight tensor. This weight tensor is shown to possess a multilinear structure induced by discrete finite difference operators. When the value function admits a Tensor Train representation, higher order interaction indices can be computed in the parallel complexity class NC squared. In contrast, under general tensor network representations without structural assumptions, the same computation is proven to be P sharp hard. The main contributions are threefold. First, we establish an exact Tensor Train representation of the STII weight tensor. Second, we develop a parallelizable evaluation algorithm with explicit complexity bounds under the Tensor Train assumption. Third, we prove that computational intractability is unavoidable in the absence of such structure. These results demonstrate that the computational difficulty of higher order interaction analysis is determined by the underlying algebraic representation rather than by the interaction index itself, providing a theoretical foundation for scalable interpretation of high dimensional models.


翻译:本研究提出了交互张量SHAP(IT-SHAP),这是Shapley泰勒交互指数(STII)的张量代数表述,使其计算结构显式化。STII将Shapley值推广至高阶交互,但其指数级组合定义使得直接计算在大规模问题上难以处理。我们将STII重新表述为作用于价值函数的线性变换,并推导出其权重张量的显式代数表示。该权重张量被证明具有由离散有限差分算子诱导的多线性结构。当价值函数允许张量列车表示时,高阶交互指数可在并行复杂度类NC平方内计算。相比之下,在没有结构假设的一般张量网络表示下,同一计算被证明是P sharp困难的。主要贡献有三方面。首先,我们建立了STII权重张量的精确张量列车表示。其次,我们在张量列车假设下开发了具有显式复杂度界的可并行化评估算法。第三,我们证明了在缺乏此类结构时计算不可行性是不可避免的。这些结果表明,高阶交互分析的计算难度由底层代数表示决定,而非交互指数本身,从而为高维模型的可扩展解释提供了理论基础。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月1日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
34+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员