Generative AI models offer many possibilities for text creation and transformation. Current graphical user interfaces (GUIs) for prompting them lack support for iterative exploration, as they do not represent prompts as actionable interface objects. We propose the concept of a composable prompting canvas for text exploration and iteration using dynamic widgets. Users generate widgets through system suggestions, prompting, or manually to capture task-relevant facets that affect the generated text. In a comparative study with a baseline (conversational UI), 18 participants worked on two writing tasks, creating diverse prompting environments with custom widgets and spatial layouts. They reported having more control over the generated text and preferred our system over the baseline. Our design significantly outperformed the baseline on the Creativity Support Index, and participants felt the results were worth the effort. This work highlights the need for GUIs that support user-driven customization and (re-)structuring to increase both the flexibility and efficiency of prompting.


翻译:生成式人工智能模型为文本创作与转换提供了诸多可能性。当前用于提示的图形用户界面(GUI)缺乏对迭代探索的支持,因为它们未能将提示表示为可操作的界面对象。我们提出了一种基于动态小部件的可组合提示画布概念,用于文本探索与迭代。用户可通过系统建议、提示或手动方式生成小部件,以捕捉影响生成文本的任务相关维度。在一项与基线系统(对话式界面)的对比研究中,18名参与者完成了两项写作任务,使用自定义小部件与空间布局构建了多样化的提示环境。参与者反馈对生成文本拥有更强的控制感,并更倾向于使用我们的系统。我们的设计在创造力支持指数上显著优于基线系统,且参与者认为成果值得投入的精力。这项工作凸显了支持用户驱动定制与(重新)结构化的GUI的必要性,以提升提示的灵活性与效率。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员