The growing instability of both global and domestic economic environments has increased the risk of financial distress at the household level. However, traditional econometric models often rely on delayed and aggregated data, limiting their effectiveness. This study introduces a machine learning-based early warning system that utilizes real-time digital and macroeconomic signals to identify financial distress in near real-time. Using a panel dataset of 750 households tracked over three monitoring rounds spanning 13 months, the framework combines socioeconomic attributes, macroeconomic indicators (such as GDP growth, inflation, and foreign exchange fluctuations), and digital economy measures (including ICT demand and market volatility). Through data preprocessing and feature engineering, we introduce lagged variables, volatility measures, and interaction terms to capture both gradual and sudden changes in financial stability. We benchmark baseline classifiers, such as logistic regression and decision trees, against advanced ensemble models including random forests, XGBoost, and LightGBM. Our results indicate that the engineered features from the digital economy significantly enhance predictive accuracy. The system performs reliably for both binary distress detection and multi-class severity classification, with SHAP-based explanations identifying inflation volatility and ICT demand as key predictors. Crucially, the framework is designed for scalable deployment in national agencies and low-bandwidth regional offices, ensuring it is accessible for policymakers and practitioners. By implementing machine learning in a transparent and interpretable manner, this study demonstrates the feasibility and impact of providing near-real-time early warnings of financial distress. This offers actionable insights that can strengthen household resilience and guide preemptive intervention strategies.


翻译:全球及国内经济环境日益不稳定,增加了家庭层面金融困境的风险。然而,传统计量经济模型通常依赖滞后和汇总的数据,限制了其有效性。本研究提出了一种基于机器学习的早期预警系统,利用实时数字信号与宏观经济信号,以近乎实时的方式识别金融困境。通过使用包含750个家庭、跨越13个月三个监测周期的面板数据集,该框架结合了社会经济属性、宏观经济指标(如GDP增长、通货膨胀和汇率波动)以及数字经济指标(包括信息通信技术需求和市场波动性)。通过数据预处理和特征工程,我们引入了滞后变量、波动性指标和交互项,以捕捉金融稳定性的渐进变化和突变。我们将逻辑回归和决策树等基线分类器与随机森林、XGBoost和LightGBM等先进集成模型进行基准比较。结果表明,来自数字经济的工程化特征显著提升了预测准确性。该系统在二元困境检测和多类别严重程度分类中均表现可靠,基于SHAP的解释识别出通货膨胀波动性和信息通信技术需求为关键预测因子。关键在于,该框架设计用于在国家机构和低带宽区域办公室进行可扩展部署,确保政策制定者和从业者能够便捷使用。通过以透明且可解释的方式实施机器学习,本研究论证了提供近乎实时金融困境早期预警的可行性和实际影响。这提供了可操作的见解,有助于增强家庭韧性并指导预防性干预策略。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员