In this paper we propose a novel problem called the ForeClassing problem where the loss of a classification decision is only observed at a future time point after the classification decision has to be made. To solve this problem, we propose an approximately Bayesian deep neural network architecture called ForeClassNet for time series forecasting and classification. This network architecture forces the network to consider possible future realizations of the time series, by forecasting future time points and their likelihood of occurring, before making its final classification decision. To facilitate this, we introduce two novel neural network layers, Welford mean-variance layers and Boltzmann convolutional layers. Welford mean-variance layers allow networks to iteratively update their estimates of the mean and variance for the forecasted time points for each inputted time series to the network through successive forward passes, which the model can then consider in combination with a learned representation of the observed realizations of the time series for its classification decision. Boltzmann convolutional layers are linear combinations of approximately Bayesian convolutional layers with different filter lengths, allowing the model to learn multitemporal resolution representations of the input time series, and which resolutions to focus on within a given Boltzmann convolutional layer through a Boltzmann distribution. Through several simulation scenarios and two real world applications we demonstrate ForeClassNet achieves superior performance compared with current state of the art methods including a near 30% improvement in test set accuracy in our financial example compared to the second best performing model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员