Pre-training has been a necessary phase for deploying pre-trained language models (PLMs) to achieve remarkable performance in downstream tasks. However, we empirically show that backdoor attacks exploit such a phase as a vulnerable entry point for task-agnostic. In this paper, we first propose $\mathtt{maxEntropy}$, an entropy-based poisoning filtering defense, to prove that existing task-agnostic backdoors are easily exposed, due to explicit triggers used. Then, we present $\mathtt{SynGhost}$, an imperceptible and universal task-agnostic backdoor attack in PLMs. Specifically, $\mathtt{SynGhost}$ hostilely manipulates clean samples through different syntactic and then maps the backdoor to representation space without disturbing the primitive representation. $\mathtt{SynGhost}$ further leverages contrastive learning to achieve universal, which performs a uniform distribution of backdoors in the representation space. In light of the syntactic properties, we also introduce an awareness module to alleviate the interference between different syntactic. Experiments show that $\mathtt{SynGhost}$ holds more serious threats. Not only do severe harmfulness to various downstream tasks on two tuning paradigms but also to any PLMs. Meanwhile, $\mathtt{SynGhost}$ is imperceptible against three countermeasures based on perplexity, fine-pruning, and the proposed $\mathtt{maxEntropy}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员