Battery health prognostics are critical for ensuring safety, efficiency, and sustainability in modern energy systems. However, it has been challenging to achieve accurate and robust prognostics due to complex battery degradation behaviors with nonlinearity, noise, capacity regeneration, etc. Existing data-driven models capture temporal degradation features but often lack knowledge guidance, which leads to unreliable long-term health prognostics. To overcome these limitations, we propose Karma, a knowledge-aware model with frequency-adaptive learning for battery capacity estimation and remaining useful life prediction. The model first performs signal decomposition to derive battery signals in different frequency bands. A dual-stream deep learning architecture is developed, where one stream captures long-term low-frequency degradation trends and the other models high-frequency short-term dynamics. Karma regulates the prognostics with knowledge, where battery degradation is modeled as a double exponential function based on empirical studies. Our dual-stream model is used to optimize the parameters of the knowledge with particle filters to ensure physically consistent and reliable prognostics and uncertainty quantification. Experimental study demonstrates Karma's superior performance, achieving average error reductions of 50.6% and 32.6% over state-of-the-art algorithms for battery health prediction on two mainstream datasets, respectively. These results highlight Karma's robustness, generalizability, and potential for safer and more reliable battery management across diverse applications.


翻译:电池健康预测对于确保现代能源系统的安全、高效和可持续性至关重要。然而,由于电池退化行为具有非线性、噪声、容量再生等复杂性,实现准确且鲁棒的预测一直面临挑战。现有数据驱动模型能够捕捉时间退化特征,但往往缺乏知识引导,导致长期健康预测不可靠。为克服这些局限,我们提出Karma,一种用于电池容量估计与剩余使用寿命预测的、具备频率自适应学习的知识感知模型。该模型首先执行信号分解以获取不同频段的电池信号。我们开发了一种双流深度学习架构,其中一流捕捉长期低频退化趋势,另一流建模高频短期动态。Karma通过知识调控预测过程,其中基于实证研究将电池退化建模为双指数函数。我们的双流模型结合粒子滤波器优化知识参数,以确保物理一致且可靠的预测及不确定性量化。实验研究表明,Karma在两个主流数据集上的电池健康预测任务中,分别比最先进算法平均误差降低了50.6%和32.6%,展现出卓越性能。这些结果凸显了Karma的鲁棒性、泛化能力及其在不同应用中实现更安全可靠电池管理的潜力。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员