The Sparse GEneral Matrix-Matrix multiplication (SpGEMM) $C = A \times B$ is a fundamental routine extensively used in domains like machine learning or graph analytics. Despite its relevance, the efficient execution of SpGEMM on vector architectures is a relatively unexplored topic. The most recent algorithm to run SpGEMM on these architectures is based on the SParse Accumulator (SPA) approach, and it is relatively efficient for sparse matrices featuring several tens of non-zero coefficients per column as it computes C columns one by one. However, when dealing with matrices containing just a few non-zero coefficients per column, the state-of-the-art algorithm is not able to fully exploit long vector architectures when computing the SpGEMM kernel. To overcome this issue we propose the SPA paRallel with Sorting (SPARS) algorithm, which computes in parallel several C columns among other optimizations, and the HASH algorithm, which uses dynamically sized hash tables to store intermediate output values. To combine the efficiency of SPA for relatively dense matrix blocks with the high performance that SPARS and HASH deliver for very sparse matrix blocks we propose H-SPA(t) and H-HASH(t), which dynamically switch between different algorithms. H-SPA(t) and H-HASH(t) obtain 1.24$\times$ and 1.57$\times$ average speed-ups with respect to SPA respectively, over a set of 40 sparse matrices obtained from the SuiteSparse Matrix Collection. For the 22 most sparse matrices, H-SPA(t) and H-HASH(t) deliver 1.42$\times$ and 1.99$\times$ average speed-ups respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员