There is a large amount of work constructing hashmaps to minimize the number of collisions. However, to the best of our knowledge no known hashing technique guarantees group fairness among different groups of items. We are given a set $P$ of $n$ tuples in $\mathbb{R}^d$, for a constant dimension $d$ and a set of groups $\mathcal{G}=\{\mathbf{g}_1,\ldots, \mathbf{g}_k\}$ such that every tuple belongs to a unique group. We formally define the fair hashing problem introducing the notions of single fairness ($Pr[h(p)=h(x)\mid p\in \mathbf{g}_i, x\in P]$ for every $i=1,\ldots, k$), pairwise fairness ($Pr[h(p)=h(q)\mid p,q\in \mathbf{g}_i]$ for every $i=1,\ldots, k$), and the well-known collision probability ($Pr[h(p)=h(q)\mid p,q\in P]$). The goal is to construct a hashmap such that the collision probability, the single fairness, and the pairwise fairness are close to $1/m$, where $m$ is the number of buckets in the hashmap. We propose two families of algorithms to design fair hashmaps. First, we focus on hashmaps with optimum memory consumption minimizing the unfairness. We model the input tuples as points in $\mathbb{R}^d$ and the goal is to find the vector $w$ such that the projection of $P$ onto $w$ creates an ordering that is convenient to split to create a fair hashmap. For each projection we design efficient algorithms that find near optimum partitions of exactly (or at most) $m$ buckets. Second, we focus on hashmaps with optimum fairness ($0$-unfairness), minimizing the memory consumption. We make the important observation that the fair hashmap problem is reduced to the necklace splitting problem. By carefully implementing algorithms for solving the necklace splitting problem, we propose faster algorithms constructing hashmaps with $0$-unfairness using $2(m-1)$ boundary points when $k=2$ and $k(m-1)(4+\log_2 (3mn))$ boundary points for $k>2$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2021年9月11日
AutoML: A Survey of the State-of-the-Art
Arxiv
75+阅读 · 2019年8月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员