This paper focuses on the non-asymptotic concentration of the heteroskedastic Wishart-type matrices. Suppose $Z$ is a $p_1$-by-$p_2$ random matrix and $Z_{ij} \sim N(0,\sigma_{ij}^2)$ independently, we prove the expected spectral norm of Wishart matrix deviations (i.e., $\mathbb{E} \left\|ZZ^\top - \mathbb{E} ZZ^\top\right\|$) is upper bounded by \begin{equation*} \begin{split} (1+\epsilon)\left\{2\sigma_C\sigma_R + \sigma_C^2 + C\sigma_R\sigma_*\sqrt{\log(p_1 \wedge p_2)} + C\sigma_*^2\log(p_1 \wedge p_2)\right\}, \end{split} \end{equation*} where $\sigma_C^2 := \max_j \sum_{i=1}^{p_1}\sigma_{ij}^2$, $\sigma_R^2 := \max_i \sum_{j=1}^{p_2}\sigma_{ij}^2$ and $\sigma_*^2 := \max_{i,j}\sigma_{ij}^2$. A minimax lower bound is developed that matches this upper bound. Then, we derive the concentration inequalities, moments, and tail bounds for the heteroskedastic Wishart-type matrix under more general distributions, such as sub-Gaussian and heavy-tailed distributions. Next, we consider the cases where $Z$ has homoskedastic columns or rows (i.e., $\sigma_{ij} \approx \sigma_i$ or $\sigma_{ij} \approx \sigma_j$) and derive the rate-optimal Wishart-type concentration bounds. Finally, we apply the developed tools to identify the sharp signal-to-noise ratio threshold for consistent clustering in the heteroskedastic clustering problem.


翻译:本文聚焦于 hesteked asked Wishart 类型基质的非亚光度集中度。 假设 $Z 是一个 $p_ 1美元 by- p_ 2 随机基质和 $ij}\ sim N( 0. 0.\ sigma\\ ij\ ⁇ 2) 独立, 我们证明 Wishart 矩阵偏差的预期光谱规范( e., $\ mathb{ left}\ math_ mathib{ E} =\ mort\ tem2\ right_ smart tylates 。 a\\\\\\ liter2\ tal_ littlex} $qual_ bequalti= gma_ Rgma_ + C\\\ gmath_\\\\\ p_ p_ 2} + C\ sgmax distrations disal=_ max max max max max max max max max max max maxxxx max max max max maxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx======================================================

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员