Background: Gliomas are among the most common malignant brain tumors and exhibit substantial heterogeneity, complicating accurate detection and segmentation. Although multi-modal MRI is the clinical standard for glioma imaging, variability across modalities and high computational demands hamper effective automated segmentation. Methods: We propose UKAN-EP, a novel 3D extension of the original 2D U-KAN model for multi-modal MRI brain tumor segmentation. While U-KAN integrates Kolmogorov-Arnold Network (KAN) layers into a U-Net backbone, UKAN-EP further incorporates Efficient Channel Attention (ECA) and Pyramid Feature Aggregation (PFA) modules to enhance inter-modality feature fusion and multi-scale feature representation. We also introduce a dynamic loss weighting strategy that adaptively balances cross-entropy and Dice losses during training. Results: On the 2024 BraTS-GLI dataset, UKAN-EP achieves superior segmentation performance (e.g., Dice = 0.9001 $\pm$ 0.0127 and IoU = 0.8257 $\pm$ 0.0186 for the whole tumor) while requiring substantially fewer computational resources (223.57 GFLOPs and 11.30M parameters) compared to strong baselines including U-Net, Attention U-Net, Swin UNETR, VT-Unet, TransBTS, and 3D U-KAN. An extensive ablation study further confirms the effectiveness of ECA and PFA and shows the limited utility of self-attention and spatial attention alternatives. Conclusion: UKAN-EP demonstrates that combining the expressive power of KAN layers with lightweight channel-wise attention and multi-scale feature aggregation improves the accuracy and efficiency of brain tumor segmentation.


翻译:背景:胶质瘤是最常见的恶性脑肿瘤之一,具有显著的异质性,使得精确检测与分割变得复杂。尽管多模态MRI是胶质瘤成像的临床标准,但模态间的差异性和高计算需求阻碍了有效的自动分割。方法:我们提出UKAN-EP,一种用于多模态MRI脑肿瘤分割的原始2D U-KAN模型的新型3D扩展。U-KAN将Kolmogorov-Arnold Network(KAN)层集成到U-Net骨干网络中,而UKAN-EP进一步引入了高效通道注意力(ECA)模块和金字塔特征聚合(PFA)模块,以增强模态间特征融合与多尺度特征表示。我们还提出了一种动态损失加权策略,在训练过程中自适应地平衡交叉熵损失与Dice损失。结果:在2024年BraTS-GLI数据集上,UKAN-EP实现了卓越的分割性能(例如,全肿瘤区域的Dice = 0.9001 $\pm$ 0.0127,IoU = 0.8257 $\pm$ 0.0186),同时与包括U-Net、Attention U-Net、Swin UNETR、VT-Unet、TransBTS和3D U-KAN在内的强基线模型相比,所需计算资源显著减少(223.57 GFLOPs和11.30M参数)。一项全面的消融研究进一步证实了ECA和PFA的有效性,并表明自注意力与空间注意力替代方案的效用有限。结论:UKAN-EP证明,将KAN层的强大表达能力与轻量级通道注意力及多尺度特征聚合相结合,能够提高脑肿瘤分割的准确性与效率。

0
下载
关闭预览

相关内容

【NeurIPS 2024 Oral】用于多条件分子生成的图扩散Transformer
专知会员服务
16+阅读 · 2024年10月5日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
VIP会员
相关资讯
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Top
微信扫码咨询专知VIP会员