We study the problem of approximating the level set of an unknown function by sequentially querying its values. We introduce a family of algorithms called Bisect and Approximate through which we reduce the level set approximation problem to a local function approximation problem. We then show how this approach leads to rate-optimal sample complexity guarantees for H{\"o}lder functions, and we investigate how such rates improve when additional smoothness or other structural assumptions hold true.


翻译:我们通过按顺序查询一个未知函数的值来研究近似于该值的问题。 我们引入了一套算法, 叫做“ 比昆特和近似 ”, 以此将设定的近似问题降低到本地函数近似问题 。 然后我们展示这个方法如何导致为 H =“ o}lder ” 函数提供最优的样本复杂度保障, 我们调查在额外的平滑性或其他结构性假设都属实时, 此类比率会如何改善 。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
已删除
雪球
6+阅读 · 2018年8月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
已删除
雪球
6+阅读 · 2018年8月19日
Top
微信扫码咨询专知VIP会员