We consider an homogeneous ideal $I$ in the polynomial ring $S=K[x_1,\dots,$ $x_m]$ over a finite field $K=\mathbb{F}_q$ and the finite set of projective rational points $\mathbb{X}$ that it defines in the projective space $\mathbb{P}^{m-1}$. We concern ourselves with the problem of computing the vanishing ideal $I(\mathbb{X})$. This is usually done by adding the equations of the projective space $I(\mathbb{P}^{m-1})$ to $I$ and computing the radical. We give an alternative and more efficient way using the saturation with respect to the homogeneous maximal ideal.


翻译:我们认为,在多球环中,美元[x_1,\dots,$x_m]美元是一个单一的理想美元。 通常通过将投影空间的方程式$(mathbb{F})加到$I(mathbb{F})和计算基数来做到这一点。 我们用同质最大理想的饱和度来提供一种替代和更有效的方法。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员