A User Next Location Prediction (UNLP) task, which predicts the next location that a user will move to given his/her trajectory, is an indispensable task for a wide range of applications. Previous studies using large-scale trajectory datasets in a single server have achieved remarkable performance in UNLP task. However, in real-world applications, legal and ethical issues have been raised regarding privacy concerns leading to restrictions against sharing human trajectory datasets to any other server. In response, Federated Learning (FL) has emerged to address the personal privacy issue by collaboratively training multiple clients (i.e., users) and then aggregating them. While previous studies employed FL for UNLP, they are still unable to achieve reliable performance because of the heterogeneity of clients' mobility. To tackle this problem, we propose the Federated Learning for Geographic Information (FedGeo), a FL framework specialized for UNLP, which alleviates the heterogeneity of clients' mobility and guarantees personal privacy protection. Firstly, we incorporate prior global geographic adjacency information to the local client model, since the spatial correlation between locations is trained partially in each client who has only a heterogeneous subset of the overall trajectories in FL. We also introduce a novel aggregation method that minimizes the gap between client models to solve the problem of client drift caused by differences between client models when learning with their heterogeneous data. Lastly, we probabilistically exclude clients with extremely heterogeneous data from the FL process by focusing on clients who visit relatively diverse locations. We show that FedGeo is superior to other FL methods for model performance in UNLP task. We also validated our model in a real-world application using our own customers' mobile phones and the FL agent system.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员