Physical simulation relies on spatially-varying mechanical properties, often laboriously hand-crafted. VoMP is a feed-forward method trained to predict Young's modulus ($E$), Poisson's ratio ($\nu$), and density ($\rho$) throughout the volume of 3D objects, in any representation that can be rendered and voxelized. VoMP aggregates per-voxel multi-view features and passes them to our trained Geometry Transformer to predict per-voxel material latent codes. These latents reside on a manifold of physically plausible materials, which we learn from a real-world dataset, guaranteeing the validity of decoded per-voxel materials. To obtain object-level training data, we propose an annotation pipeline combining knowledge from segmented 3D datasets, material databases, and a vision-language model, along with a new benchmark. Experiments show that VoMP estimates accurate volumetric properties, far outperforming prior art in accuracy and speed.
翻译:物理模拟依赖于空间变化的力学性能,这些性能通常需要人工费力地手动设定。VoMP是一种前馈方法,经过训练能够预测三维物体整个体积内的杨氏模量($E$)、泊松比($\\nu$)和密度($\\rho$),适用于任何可渲染并体素化的表示形式。VoMP聚合每个体素的多视图特征,并将其输入我们训练的几何Transformer中,以预测每个体素的材料潜在编码。这些潜在编码位于物理上合理的材料流形上,该流形通过真实世界数据集学习获得,确保解码后的每个体素材料的有效性。为获取物体级训练数据,我们提出了一种标注流程,结合了分割三维数据集、材料数据库和视觉语言模型的知识,并引入了一个新的基准测试。实验表明,VoMP能够准确估计体积性能,在精度和速度上远超现有方法。