Background: Speech and language pathologists (SLPs) often relyon judgements of speech fluency for diagnosing or monitoringpatients with aphasia. However, such subjective methods havebeen criticised for their lack of reliability and their clinical cost interms of time. Aims: This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency in people with aphasia (PWA). Methods & Procedures: Twenty-nine PWA and five control participantswere recruited via non-profit organizations and SLP networks. All participants were recorded while reading out loud a set ofsentences taken from the French version of the Boston Diagnostic Aphasia Examination. Three trained SLPs assessed the fluency of each sentence on a five-point qualitative scale. A forward-backward divergence segmentation and a clustering algorithm were used to compute, for each sentence, four automatic predictors of speech fluency: pseudo-syllable rate, speech ratio, rate of silent breaks, and standard deviation of pseudo-syllable length. The four predictors were finally combined into multivariate regression models (a multiplelinear regression - MLR, and two non-linear models) to predict the average SLP ratings of speech fluency, using a leave-one speaker-out validation scheme. Outcomes & Results: All models achieved accurate predictions of speech fluency ratings, with average root-mean-square errors as low as 0.5. The MLR yielded a correlation coefficient of 0.87 with reference ratings at the sentence level, and of 0.93 when aggregating the data for each participant. The inclusion of an additional predictor sensitive to repetitions improved further the predictions with a correlation coefficient of 0.91 at the sentence level, and of 0.96 at the participant level. Conclusions: The algorithms used in this study can constitute a cost-effective and reliable tool for the assessment of the speech fluency of patients with aphasia in read-aloud tasks. Perspectives for the assessment of spontaneous speech are discussed.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员