Understanding what drives popularity is critical in today's digital service economy, where content creators compete for consumer attention. Prior studies have primarily emphasized the role of content features, yet creators often misjudge what audiences actually value. This study applies Latent Dirichlet Allocation (LDA) modeling to a large corpus of TED Talks, treating the platform as a case of digital service provision in which creators (speakers) and consumers (audiences) interact. By comparing the thematic supply of creators with the demand expressed in audience engagement, we identify persistent mismatches between producer offerings and consumer preferences. Our longitudinal analysis further reveals that temporal dynamics exert a stronger influence on consumer engagement than thematic content, suggesting that when content is delivered may matter more than what is delivered. These findings challenge the dominant assumption that content features are the primary drivers of popularity and highlight the importance of timing and contextual factors in shaping consumer responses. The results provide new insights into consumer attention dynamics on digital platforms and carry practical implications for marketers, platform managers, and content creators seeking to optimize audience engagement strategies.


翻译:在当今数字服务经济中,理解驱动流行度的因素至关重要,内容创作者在此环境中竞相争夺消费者注意力。先前的研究主要强调内容特征的作用,但创作者往往误判受众实际重视的因素。本研究将潜在狄利克雷分配(LDA)模型应用于TED演讲的大型语料库,将该平台视为创作者(演讲者)与消费者(观众)互动的数字服务提供案例。通过比较创作者的主题供给与观众参与中表达的需求,我们识别出生产者供给与消费者偏好之间持续存在的错配。我们的纵向分析进一步揭示,时间动态对消费者参与度的影响强于主题内容,这表明内容交付的时机可能比交付的内容更为重要。这些发现挑战了内容特征是流行度主要驱动因素的主流假设,并突显了时机与情境因素在塑造消费者反应中的重要性。研究结果为数字平台上的消费者注意力动态提供了新见解,并对寻求优化受众参与策略的市场营销人员、平台管理者和内容创作者具有实际意义。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员