Newton's method may exhibit slower convergence than vanilla Gradient Descent in its initial phase on strongly convex problems. Classical Newton-type multilevel methods mitigate this but, like Gradient Descent, achieve only linear convergence near the minimizer. We introduce an adaptive multilevel Newton-type method with a principled automatic switch to full Newton once its quadratic phase is reached. The local quadratic convergence for strongly convex functions with Lipschitz continuous Hessians and for self-concordant functions is established and confirmed empirically. Although per-iteration cost can exceed that of classical multilevel schemes, the method is efficient and consistently outperforms Newton's method, Gradient Descent, and the multilevel Newton method, indicating that second-order methods can outperform first-order methods even when Newton's method is initially slow.


翻译:在强凸优化问题上,牛顿法在初始阶段可能表现出比普通梯度下降更慢的收敛速度。经典牛顿型多级方法虽能缓解此问题,但如同梯度下降,在接近极小值点时仅能达到线性收敛。我们提出一种自适应多级牛顿型方法,该方法在达到二次收敛阶段时,通过原理性自动切换机制转为完整牛顿法。我们建立了该方法在具有Lipschitz连续Hessian矩阵的强凸函数及自协调函数上的局部二次收敛性,并通过实验验证。尽管每次迭代成本可能超过经典多级方案,但该方法效率显著,在实验中持续优于牛顿法、梯度下降及多级牛顿法,这表明即使牛顿法初始收敛缓慢,二阶方法仍可超越一阶方法的性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
26+阅读 · 2024年2月9日
Arxiv
15+阅读 · 2021年11月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员