It's important to monitor road issues such as bumps and potholes to enhance safety and improve road conditions. Smartphones are equipped with various built-in sensors that offer a cost-effective and straightforward way to assess road quality. However, progress in this area has been slow due to the lack of high-quality, standardized datasets. This paper discusses a new dataset created by a mobile app that collects sensor data from devices like GPS, accelerometers, gyroscopes, magnetometers, gravity sensors, and orientation sensors. This dataset is one of the few that integrates Geographic Information System (GIS) data with weather information and video footage of road conditions, providing a comprehensive understanding of road issues with geographic context. The dataset allows for a clearer analysis of road conditions by compiling essential data, including vehicle speed, acceleration, rotation rates, and magnetic field intensity, along with the visual and spatial context provided by GIS, weather, and video data. Its goal is to provide funding for initiatives that enhance traffic management, infrastructure development, road safety, and urban planning. Additionally, the dataset will be publicly accessible to promote further research and innovation in smart transportation systems.


翻译:监测道路颠簸和坑洼等问题对于提升安全性和改善路况至关重要。智能手机配备多种内置传感器,为评估道路质量提供了一种经济高效且简便的方法。然而,由于缺乏高质量、标准化的数据集,该领域进展缓慢。本文介绍了一个由移动应用程序创建的新数据集,该程序收集来自GPS、加速度计、陀螺仪、磁力计、重力传感器和方向传感器等设备的传感器数据。该数据集是少数将地理信息系统(GIS)数据与天气信息及道路状况视频片段相结合的数据集之一,提供了具有地理背景的道路问题的全面理解。通过整合车辆速度、加速度、旋转速率和磁场强度等关键数据,以及GIS、天气和视频数据提供的视觉与空间背景,该数据集能够更清晰地分析道路状况。其目标是为加强交通管理、基础设施发展、道路安全和城市规划的举措提供数据支持。此外,该数据集将公开访问,以促进智能交通系统的进一步研究与创新。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年6月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员