The Extended Church-Turing Thesis (ECTT) posits that all effective information processing, including unbounded and non-uniform interactive computations, can be described in terms of interactive Turing machines with advice. Does this assertion also apply to the abilities of contemporary large language models (LLMs)? From a broader perspective, this question calls for an investigation of the computational power of LLMs by the classical means of computability and computational complexity theory, especially the theory of automata. Along these lines, we establish a number of fundamental results. Firstly, we argue that any fixed (non-adaptive) LLM is computationally equivalent to a, possibly very large, deterministic finite-state transducer. This characterizes the base level of LLMs. We extend this to a key result concerning the simulation of space-bounded Turing machines by LLMs. Secondly, we show that lineages of evolving LLMs are computationally equivalent to interactive Turing machines with advice. The latter finding confirms the validity of the ECTT for lineages of LLMs. From a computability viewpoint, it also suggests that lineages of LLMs possess super-Turing computational power. Consequently, in our computational model knowledge generation is in general a non-algorithmic process realized by lineages of LLMs. Finally, we discuss the merits of our findings in the broader context of several related disciplines and philosophies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员