This work introduces an adaptive Bayesian algorithm for real-time trajectory prediction via intention inference, where a target's intentions and motion characteristics are unknown and subject to change. The method concurrently estimates two critical variables: the target's current intention, modeled as a Markovian latent state, and an intention parameter that describes the target's adherence to a shortest-path policy. By integrating this joint update technique, the algorithm maintains robustness against abrupt intention shifts and unknown motion dynamics. A sampling-based trajectory prediction mechanism then exploits these adaptive estimates to generate probabilistic forecasts with quantified uncertainty. We validate the framework through numerical experiments: Ablation studies of two cases, and a 500-trial Monte Carlo analysis; Hardware demonstrations on quadrotor and quadrupedal platforms. Experimental results demonstrate that the proposed approach significantly outperforms non-adaptive and partially adaptive methods. The method operates in real time around 270 Hz without requiring training or detailed prior knowledge of target behavior, showcasing its applicability in various robotic systems.


翻译:本研究提出一种基于意图推断的自适应贝叶斯实时轨迹预测算法,适用于目标意图与运动特性未知且可能动态变化的场景。该方法同步估计两个关键变量:将目标当前意图建模为马尔可夫隐状态,以及描述目标遵循最短路径策略程度的意图参数。通过集成这种联合更新技术,算法在面对意图突变和未知运动动力学时保持鲁棒性。基于采样的轨迹预测机制利用这些自适应估计生成具有量化不确定性的概率预测。我们通过数值实验验证该框架:两种场景的消融研究及500次蒙特卡洛分析;在四旋翼与四足机器人平台上的硬件演示。实验结果表明,所提方法显著优于非自适应与部分自适应方法。该方法以约270赫兹的频率实时运行,无需训练或先验目标行为细节知识,展现了其在各类机器人系统中的适用性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员