This manuscript explores the evolutionary emergence of semantic closure -- the self-referential mechanism through which symbols actively construct and interpret their own functional contexts -- by integrating concepts from relational biology, physical biosemiotics, and ecological psychology into a unified computational enactivist framework. By extending Hofmeyr's (Fabrication, Assembly)-systems -- a continuation of Rosen's (Metabolism, Repair)-systems -- with a temporal parametrization, we develop a model capable of capturing critical properties of life, including autopoiesis, anticipation, and adaptation. Our stepwise model traces the evolution of semantic closure from simple reaction networks that recognize regular languages to self-constructing chemical systems with anticipatory capabilities, identifying self-reference as necessary for robust self-replication and open-ended evolution. Such a computational enactivist perspective underscores the essential necessity of implementing syntax-pragmatic transformations into realizations of life, providing a cohesive theoretical basis for a recently proposed trialectic between autopoiesis, anticipation, and adaptation to solve the problem of relevance realization. Thus, our work opens avenues for new models of computation that can better capture the dynamics of life, naturalize agency and cognition, and provide fundamental principles underlying biological information processing.
翻译:本文通过整合关系生物学、物理生物符号学与生态心理学中的概念,构建了一个统一的计算具身框架,以探讨语义闭合——即符号主动构建并解释其自身功能语境的自我指涉机制——在演化中的涌现过程。通过将霍夫迈尔的(制造,装配)系统——即罗森的(代谢,修复)系统的延续——扩展为具有时间参数化的形式,我们建立了一个能够捕捉生命关键特性的模型,包括自创生、预期与适应。我们的逐步演化模型追溯了语义闭合从识别正则语言的简单反应网络,到具备预期能力的自构建化学系统的演化路径,并指出自我指涉是实现稳健自我复制与开放式演化的必要条件。这一计算具身视角强调了将句法-语用转换实现为生命具体化过程的根本必要性,为近期提出的自创生、预期与适应三者间的三元辩证关系提供了统一的理论基础,以解决相关性实现问题。因此,我们的工作为新型计算模型开辟了道路,这些模型能更好地捕捉生命动态,将能动性与认知自然化,并为生物信息处理提供基本原理。