This paper presents CMU's submission to the IWSLT 2025 Simultaneous Speech Translation (SST) task for translating unsegmented English speech into Chinese and German text in a streaming manner. Our end-to-end speech-to-text system integrates a chunkwise causal Wav2Vec 2.0 speech encoder, an adapter, and the Qwen2.5-7B-Instruct as the decoder. We use a two-stage simultaneous training procedure on robust speech segments curated from LibriSpeech, CommonVoice, and VoxPopuli datasets, utilizing standard cross-entropy loss. Our model supports adjustable latency through a configurable latency multiplier. Experimental results demonstrate that our system achieves 44.3 BLEU for English-to-Chinese and 25.1 BLEU for English-to-German translations on the ACL60/60 development set, with computation-aware latencies of 2.7 seconds and 2.3 seconds, and theoretical latencies of 2.2 and 1.7 seconds, respectively.


翻译:本文介绍了卡内基梅隆大学为IWSLT 2025同声语音翻译任务提交的系统,该系统以流式方式将未分段的英语语音实时翻译为中文和德文文本。我们的端到端语音到文本系统集成了一个分块因果Wav2Vec 2.0语音编码器、一个适配器以及Qwen2.5-7B-Instruct作为解码器。我们采用两阶段同声训练流程,在从LibriSpeech、CommonVoice和VoxPopuli数据集中筛选的鲁棒语音片段上进行训练,并使用标准交叉熵损失。我们的模型通过可配置的延迟乘数支持可调节的延迟。实验结果表明,我们的系统在ACL60/60开发集上实现了英语到中文翻译44.3 BLEU和英语到德文翻译25.1 BLEU的分数,其计算感知延迟分别为2.7秒和2.3秒,理论延迟分别为2.2秒和1.7秒。

0
下载
关闭预览

相关内容

通过计算机进行不同语言之间的直接语音翻译,辅助不同语言背景的人们进行沟通已经成为世界各国研究的重点。 和一般的文本翻译不同,语音翻译需要把语音识别、机器翻译和语音合成三大技术进行集成,具有很大的挑战性。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员