How does a cause lead to an effect, and which intermediate causal steps explain their connection? This work scrutinizes the mechanistic causal reasoning capabilities of large language models (LLMs) to answer these questions through the task of implicit causal chain discovery. In a diagnostic evaluation framework, we instruct nine LLMs to generate all possible intermediate causal steps linking given cause-effect pairs in causal chain structures. These pairs are drawn from recent resources in argumentation studies featuring polarized discussion on climate change. Our analysis reveals that LLMs vary in the number and granularity of causal steps they produce. Although they are generally self-consistent and confident about the intermediate causal connections in the generated chains, their judgments are mainly driven by associative pattern matching rather than genuine causal reasoning. Nonetheless, human evaluations confirmed the logical coherence and integrity of the generated chains. Our baseline causal chain discovery approach, insights from our diagnostic evaluation, and benchmark dataset with causal chains lay a solid foundation for advancing future work in implicit, mechanistic causal reasoning in argumentation settings.


翻译:一个原因如何导致一个结果,哪些中间因果步骤解释了它们之间的联系?本研究通过隐式因果链发现任务,深入审视大语言模型(LLMs)的机制性因果推理能力。在一个诊断性评估框架中,我们指导九个LLM生成连接给定因果对的所有可能中间因果步骤,这些因果对选自近期论证研究中关于气候变化极化讨论的资源。我们的分析表明,不同LLM生成的因果步骤在数量和粒度上存在差异。尽管它们通常对生成链中的中间因果连接具有自洽性和信心,但其判断主要受关联模式匹配驱动,而非真正的因果推理。然而,人工评估确认了生成链的逻辑连贯性和完整性。我们提出的基线因果链发现方法、诊断性评估的见解以及包含因果链的基准数据集,为推进论证场景中隐式机制性因果推理的未来研究奠定了坚实基础。

0
下载
关闭预览

相关内容

大语言模型是基于海量文本数据训练的深度学习模型。它不仅能够生成自然语言文本,还能够深入理解文本含义,处理各种自然语言任务,如文本摘要、问答、翻译等。2023年,大语言模型及其在人工智能领域的应用已成为全球科技研究的热点,其在规模上的增长尤为引人注目,参数量已从最初的十几亿跃升到如今的一万亿。参数量的提升使得模型能够更加精细地捕捉人类语言微妙之处,更加深入地理解人类语言的复杂性。在过去的一年里,大语言模型在吸纳新知识、分解复杂任务以及图文对齐等多方面都有显著提升。随着技术的不断成熟,它将不断拓展其应用范围,为人类提供更加智能化和个性化的服务,进一步改善人们的生活和生产方式。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员