Existing EEG-driven image reconstruction methods often overlook spatial attention mechanisms, limiting fidelity and semantic coherence. To address this, we propose a dual-conditioning framework that combines EEG embeddings with spatial saliency maps to enhance image generation. Our approach leverages the Adaptive Thinking Mapper (ATM) for EEG feature extraction and fine-tunes Stable Diffusion 2.1 via Low-Rank Adaptation (LoRA) to align neural signals with visual semantics, while a ControlNet branch conditions generation on saliency maps for spatial control. Evaluated on THINGS-EEG, our method achieves a significant improvement in the quality of low- and high-level image features over existing approaches. Simultaneously, strongly aligning with human visual attention. The results demonstrate that attentional priors resolve EEG ambiguities, enabling high-fidelity reconstructions with applications in medical diagnostics and neuroadaptive interfaces, advancing neural decoding through efficient adaptation of pre-trained diffusion models.


翻译:现有的脑电图(EEG)驱动图像重建方法往往忽视空间注意力机制,限制了重建结果的保真度和语义连贯性。为解决此问题,我们提出了一种双条件框架,将EEG嵌入与空间显著性图相结合以增强图像生成。我们的方法利用自适应思维映射器(ATM)进行EEG特征提取,并通过低秩自适应(LoRA)微调Stable Diffusion 2.1,以对齐神经信号与视觉语义,同时使用ControlNet分支基于显著性图对生成过程进行空间控制。在THINGS-EEG数据集上的评估表明,我们的方法在低层与高层图像特征质量上较现有方法有显著提升,同时与人类视觉注意力高度对齐。结果表明,注意力先验能够解决EEG信号的模糊性,实现高保真度重建,可应用于医学诊断和神经自适应接口,通过高效适配预训练扩散模型推动了神经解码技术的发展。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员