Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems. In this work, we stress-test the method on both simple mass-spring systems and more complex and realistic systems with several internal and external ports, including a system with multiple connected tanks. We quantify performance under various conditions and show that imposing different assumptions greatly affects the performance, highlighting advantages and limitations of the method. We demonstrate that port-Hamiltonian neural networks can be extended to higher dimensions with state-dependent ports. We consider learning on systems with known and unknown external ports. The port-Hamiltonian formulation allows for detecting deviations and still provide a valid model when the deviations are removed. Finally, we propose a symmetric high-order integration scheme for improved training on sparse and noisy data.


翻译:基于汉密尔顿式配方的混合机学习最近成功地展示了简单的机械系统。在这项工作中,我们用若干内部和外部港口,包括多辆相关坦克的系统,对简单的大规模循环系统和更为复杂和现实的系统,对这种方法进行压力测试,对各种条件下的性能进行量化,并表明采用不同的假设对性能产生很大影响,突出该方法的优点和局限性。我们证明港口-汉堡神经网络可以扩展到国家依赖的港口的更高层面。我们考虑学习已知和未知外部港口的系统。港口-哈米尔顿式配方可以发现偏差,在消除偏差时仍然提供一个有效的模型。最后,我们提议采用一个对称高顺序集成计划,以改进关于稀杂杂乱无遗的数据的培训。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2022年9月27日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员