Graph Gaussian Processes (GGPs) provide a data-efficient solution on graph structured domains. Existing approaches have focused on static structures, whereas many real graph data represent a dynamic structure, limiting the applications of GGPs. To overcome this we propose evolving-Graph Gaussian Processes (e-GGPs). The proposed method is capable of learning the transition function of graph vertices over time with a neighbourhood kernel to model the connectivity and interaction changes between vertices. We assess the performance of our method on time-series regression problems where graphs evolve over time. We demonstrate the benefits of e-GGPs over static graph Gaussian Process approaches.


翻译:图形 Gaussian 进程( GGPs) 提供了图形结构化域的数据效率解决方案。 现有方法侧重于静态结构, 而许多真实的图形数据代表了动态结构, 限制了GGPs的应用。 要克服这一点, 我们建议了正在演变的Graph Gaussian进程( e- GGPs)。 拟议的方法能够用邻里内核来学习图形顶端的过渡功能, 以模拟顶端之间的连接和互动变化。 我们评估了我们处理时间序列回归问题的方法的性能, 即图表随时间演变而演变。 我们展示了电子GGPs相对于静态图形高斯进程方法的效益 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
商业数据分析,39页ppt
专知会员服务
165+阅读 · 2020年6月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Matérn Gaussian processes on Riemannian manifolds
Arxiv
0+阅读 · 2021年8月27日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
商业数据分析,39页ppt
专知会员服务
165+阅读 · 2020年6月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Top
微信扫码咨询专知VIP会员