Contrastive opinion extraction aims to extract a structured summary or key points organised as positive and negative viewpoints towards a common aspect or topic. Most recent works for unsupervised key point extraction is largely built on sentence clustering or opinion summarisation based on the popularity of opinions expressed in text. However, these methods tend to generate aspect clusters with incoherent sentences, conflicting viewpoints, redundant aspects. To address these problems, we propose a novel unsupervised Contrastive OpinioN Extraction model, called Cone, which learns disentangled latent aspect and sentiment representations based on pseudo aspect and sentiment labels by combining contrastive learning with iterative aspect/sentiment clustering refinement. Apart from being able to extract contrastive opinions, it is also able to quantify the relative popularity of aspects and their associated sentiment distributions. The model has been evaluated on both a hotel review dataset and a Twitter dataset about COVID vaccines. The results show that despite using no label supervision or aspect-denoted seed words, Cone outperforms a number of competitive baselines on contrastive opinion extraction. The results of Cone can be used to offer a better recommendation of products and services online.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员