We derive a new class of non-linear expectations from first-principles deterministic chaotic dynamics. The homogenization of the system's skew-adjoint microscopic generator is achieved using the spectral theory of transfer operators for uniformly hyperbolic flows. We prove convergence in the viscosity sense to a macroscopic evolution governed by a fully non-linear Hamilton-Jacobi-Bellman (HJB) equation. Our central result establishes that the HJB Hamiltonian possesses a rigid structure: affine in the Hessian but demonstrably non-convex in the gradient. This defines a new $θ$-expectation and constructively establishes a class of non-convex stochastic control problems fundamentally outside the sub-additive framework of G-expectations.


翻译:我们从第一性原理的确定性混沌动力学出发,推导出一类新的非线性期望。通过运用一致双曲流的转移算子谱理论,实现了系统斜伴随微观生成元的均匀化。我们证明了在粘性意义下收敛于由完全非线性Hamilton-Jacobi-Bellman(HJB)方程主导的宏观演化。我们的核心结果表明,HJB哈密顿量具有刚性结构:在Hessian矩阵中是仿射的,但在梯度上被证明是非凸的。这定义了一种新的θ-期望,并构造性地建立了一类非凸随机控制问题,其从根本上超出了G-期望的次可加性框架。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员