From its early foundations in the 1970s, empirical software engineering (ESE) has evolved into a mature research discipline that embraces a plethora of different topics, methodologies, and industrial practices. Despite its remarkable progress, the ESE research field still needs to keep evolving, as new impediments, shortcoming, and technologies emerge. Research reproducibility, limited external validity, subjectivity of reviews, and porting research results to industrial practices are just some examples of the drivers for improvements to ESE research. Additionally, several facets of ESE research are not documented very explicitly, which makes it difficult for newcomers to pick them up. With this new regular ACM SIGSOFT SEN column (SEN-ESE), we introduce a venue for discussing meta-aspects of ESE research, ranging from general topics such as the nature and best practices for replication packages, to more nuanced themes such as statistical methods, interview transcription tools, and publishing interdisciplinary research. Our aim for the column is to be a place where we can regularly spark conversations on ESE topics that might not often be touched upon or are left implicit. Contributions to this column will be grounded in expert interviews, focus groups, surveys, and position pieces, with the goal of encouraging reflection and improvement in how we conduct, communicate, teach, and ultimately improve ESE research. Finally, we invite feedback from the ESE community on challenging, controversial, or underexplored topics, as well as suggestions for voices you would like to hear from. While we cannot promise to act on every idea, we aim to shape this column around the community interests and are grateful for all contributions.


翻译:自20世纪70年代早期奠定基础以来,实证软件工程(ESE)已发展成为一个成熟的研究领域,涵盖了众多不同的主题、方法论和工业实践。尽管取得了显著进展,但随着新的障碍、不足和技术的出现,ESE研究领域仍需持续演进。研究的可复现性、有限的外部效度、评审的主观性以及研究成果向工业实践的转化,仅仅是推动ESE研究改进的部分驱动因素。此外,ESE研究的多个方面并未得到非常明确的记录,这使得新入行者难以掌握。通过这个新的ACM SIGSOFT SEN常设专栏(SEN-ESE),我们引入了一个讨论ESE研究元层面的平台,范围涵盖从复现包的本质与最佳实践等一般性主题,到统计方法、访谈转录工具以及发表跨学科研究等更为细致的议题。本专栏旨在成为一个可以定期引发关于那些不常被触及或隐含的ESE话题讨论的场所。专栏的稿件将基于专家访谈、焦点小组、调查和立场文章,旨在鼓励对我们如何开展、交流、教授并最终改进ESE研究进行反思与提升。最后,我们邀请ESE社区就具有挑战性、争议性或尚未充分探索的主题提供反馈,并提出您希望听到的声音建议。虽然我们无法承诺采纳每一个想法,但我们致力于围绕社区兴趣来塑造本专栏,并对所有贡献表示感激。

0
下载
关闭预览

相关内容

经验软件工程为应用软件工程研究提供了一个具有很强的经验成分的论坛,并为发表与研究者和实践者相关的经验结果提供了一个场所。这里提出的实证研究通常涉及数据和经验的收集和分析,这些数据和经验可用于描述、评估和揭示软件开发可交付成果、实践和技术之间的关系。随着时间的推移,预计这些经验结果将形成一个知识体系,从而形成广为接受和形成良好的理论。《华尔街日报》还提供了行业经验报告,详细介绍了软件技术(过程、方法或工具)的应用及其在工业环境中的有效性。实证软件工程促进了行业相关研究的出版,解决了研究与实践之间的巨大差距。官网地址:http://dblp.uni-trier.de/db/journals/ese/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
16+阅读 · 2020年2月6日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
16+阅读 · 2020年2月6日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
15+阅读 · 2018年6月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员