Minimum spanning trees (MSTs) provide a convenient representation of datasets in numerous pattern recognition activities. Moreover, they are relatively fast to compute. In this paper, we quantify the extent to which they are meaningful in low-dimensional partitional data clustering tasks. By identifying the upper bounds for the agreement between the best (oracle) algorithm and the expert labels from a large battery of benchmark data, we discover that MST methods can be very competitive. Next, we review, study, extend, and generalise a few existing, state-of-the-art MST-based partitioning schemes. This leads to some new noteworthy approaches. Overall, the Genie and the information-theoretic methods often outperform the non-MST algorithms such as K-means, Gaussian mixtures, spectral clustering, Birch, density-based, and classical hierarchical agglomerative procedures. Nevertheless, we identify that there is still some room for improvement, and thus the development of novel algorithms is encouraged.


翻译:最小生成树(MST)为众多模式识别任务中的数据集提供了一种便捷的表示形式,且计算速度相对较快。本文旨在量化其在低维划分式数据聚类任务中的有效性程度。通过在一系列基准数据上,确定最优(预言机)算法与专家标注之间一致性的理论上限,我们发现基于MST的方法具有极强的竞争力。随后,我们对几种现有的、先进的基于MST的划分方案进行了回顾、研究、扩展与推广,从而提出了一些值得关注的新方法。总体而言,Genie算法与信息论方法在多数情况下优于非MST算法,例如K均值、高斯混合模型、谱聚类、Birch、基于密度的聚类以及经典的层次聚合方法。然而,我们指出该领域仍存在改进空间,因此鼓励进一步开发新型算法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年7月18日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员