To analyze longitudinal zero-inflated count data, we extend existing models by introducing marginalized zero-inflated Poisson (MZIP) models with random effects, which explicitly capture the marginal effect of covariates and address limitations of previous methods. These models provide a clearer interpretation of the overall mean effect of covariates on zero-inflated count data. To further accommodate overdispersion, we develop marginalized zero-inflated negative binomial (MZINB) models. Both models incorporate subject-specific heterogeneity through a flexible random effects covariance structure. Simulation studies are conducted to evaluate the performance of the MZIP and MZINB models, comparing their inference under both homogeneous and heterogeneous random effects. Finally, we illustrate the applicability of the proposed models through an analysis of systemic lupus erythematosus data.


翻译:为分析纵向零膨胀计数数据,我们通过引入带有随机效应的边际化零膨胀泊松(MZIP)模型,扩展了现有模型,这些模型明确捕捉协变量的边际效应,并解决了先前方法的局限性。这些模型为协变量对零膨胀计数数据的总体均值效应提供了更清晰的解释。为进一步适应过度离散性,我们开发了边际化零膨胀负二项(MZINB)模型。两种模型均通过灵活的随机效应协方差结构纳入个体特异性异质性。我们进行了模拟研究以评估MZIP和MZINB模型的性能,比较它们在同质和异质随机效应下的推断结果。最后,通过分析系统性红斑狼疮数据,我们展示了所提模型的适用性。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
专知会员服务
12+阅读 · 2021年6月20日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
专知会员服务
12+阅读 · 2021年6月20日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员