We prove tight lower bounds for online multicalibration, establishing an information-theoretic separation from marginal calibration. In the general setting where group functions can depend on both context and the learner's predictions, we prove an $Ω(T^{2/3})$ lower bound on expected multicalibration error using just three disjoint binary groups. This matches the upper bounds of Noarov et al. (2025) up to logarithmic factors and exceeds the $O(T^{2/3-\varepsilon})$ upper bound for marginal calibration (Dagan et al., 2025), thereby separating the two problems. We then turn to lower bounds for the more difficult case of group functions that may depend on context but not on the learner's predictions. In this case, we establish an $\widetildeΩ(T^{2/3})$ lower bound for online multicalibration via a $Θ(T)$-sized group family constructed using orthogonal function systems, again matching upper bounds up to logarithmic factors.


翻译:我们证明了在线多标定的紧下界,从而建立了其与边缘标定在信息论意义上的分离。在群函数可同时依赖于上下文和学习器预测的一般设定下,我们仅使用三个互斥二元群证明了期望多标定误差的$Ω(T^{2/3})$下界。该结果与Noarov等人(2025)的上界在对数因子内匹配,且超越了边缘标定的$O(T^{2/3-\varepsilon})$上界(Dagan等人,2025),从而分离了这两个问题。随后我们转向研究更困难情形——群函数可依赖于上下文但不能依赖于学习器预测——的下界。在此情形下,我们通过利用正交函数系统构造的$Θ(T)$规模群族,建立了在线多标定的$\widetildeΩ(T^{2/3})$下界,该结果同样在对数因子内匹配现有上界。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月8日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员