Symbolic automata are finite state automata that support potentially infinite alphabets, such as the set of rational numbers, generally applied to regular expressions/languages over finite words. In symbolic automata (or automata modulo theories), an alphabet is represented by an effective Boolean algebra, supported by a decision procedure for satisfiability. Regular languages over infinite words (so called $\omega$-regular languages) have a rich history paralleling that of regular languages over finite words, with well known applications to model checking via B\"uchi automata and temporal logics. We generalize symbolic automata to support $\omega$-regular languages via symbolic transition terms and symbolic derivatives, bringing together a variety of classic automata and logics in a unified framework that provides all the necessary ingredients to support symbolic model checking modulo $A$, $NBW_A$. In particular, we define: (1) alternating B\"uchi automata modulo $A$, $ABW_A$ as well (non-alternating) non-deterministic B\"uchi automata modulo $A$, $NBW_A$; (2) an alternation elimination algorithm that incrementally constructs an $NBW_A$ from an $ABW_A$, and can also be used for constructing the product of two $NBW_A$'s; (3) a definition of linear temporal logic (LTL) modulo $A$ that generalizes Vardi's construction of alternating B\"uchi automata from LTL, using (2) to go from LTL modulo $A$ to $NBW_A$ via $ABW_A$. Finally, we present a combination of LTL modulo $A$ with extended regular expressions modulo $A$ that generalizes the Property Specification Language (PSL). Our combination allows regex complement, that is not supported in PSL but can be supported naturally by using symbolic transition terms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员