Tensor clustering, which seeks to extract underlying cluster structures from noisy tensor observations, has gained increasing attention. One extensively studied model for tensor clustering is the tensor block model, which postulates the existence of clustering structures along each mode and has found broad applications in areas like multi-tissue gene expression analysis and multilayer network analysis. However, currently available computationally feasible methods for tensor clustering either are limited to handling i.i.d. sub-Gaussian noise or suffer from suboptimal statistical performance, which restrains their utility in applications that have to deal with heteroskedastic data and/or low signal-to-noise-ratio (SNR). To overcome these challenges, we propose a two-stage method, named $\mathsf{High\text{-}order~HeteroClustering}$ ($\mathsf{HHC}$), which starts by performing tensor subspace estimation via a novel spectral algorithm called $\mathsf{Thresholded~Deflated\text{-}HeteroPCA}$, followed by approximate $k$-means to obtain cluster nodes. Encouragingly, our algorithm provably achieves exact clustering as long as the SNR exceeds the computational limit (ignoring logarithmic factors); here, the SNR refers to the ratio of the pairwise disparity between nodes to the noise level, and the computational limit indicates the lowest SNR that enables exact clustering with polynomial runtime. Comprehensive simulation and real-data experiments suggest that our algorithm outperforms existing algorithms across various settings, delivering more reliable clustering performance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月22日
Arxiv
0+阅读 · 2023年12月22日
Arxiv
12+阅读 · 2022年11月21日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年12月22日
Arxiv
0+阅读 · 2023年12月22日
Arxiv
12+阅读 · 2022年11月21日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员