We introduce a fully discrete scheme to solve a class of high-dimensional Mean Field Games systems. Our approach couples semi-Lagrangian (SL) time discretizations with Tensor-Train (TT) decompositions to tame the curse of dimensionality. By reformulating the classical Hamilton-Jacobi-Bellman and Fokker-Planck equations as a sequence of advection-diffusion-reaction subproblems within a smoothed policy iteration, we construct both first and second order in time SL schemes. The TT format and appropriate quadrature rules reduce storage and computational cost from exponential to polynomial in the dimension. Numerical experiments demonstrate that our TT-accelerated SL methods achieve their theoretical convergence rates, exhibit modest growth in memory usage and runtime with dimension, and significantly outperform grid-based SL in accuracy per CPU second.


翻译:本文提出了一种全离散格式用于求解一类高维平均场博弈系统。该方法将半拉格朗日时间离散化与张量列分解相结合,以克服维度灾难问题。通过将经典的Hamilton-Jacobi-Bellman方程和Fokker-Planck方程重构为平滑策略迭代框架内的一系列对流-扩散-反应子问题,我们构建了时间上一阶和二阶精度的半拉格朗日格式。张量列格式配合适当的数值积分规则,将存储和计算成本从维度的指数级降低至多项式级。数值实验表明:我们的张量列加速半拉格朗日方法达到了理论收敛阶;内存占用和运行时间随维度增长保持适度;在单位CPU时间精度方面显著优于基于网格的半拉格朗日方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员