Quickly and reliably finding accurate inverse kinematics (IK) solutions remains a challenging problem for many robot manipulators. Existing numerical solvers are broadly applicable but typically only produce a single solution and rely on local search techniques to minimize nonconvex objective functions. More recent learning-based approaches that approximate the entire feasible set of solutions have shown promise as a means to generate multiple fast and accurate IK results in parallel. However, existing learning-based techniques have a significant drawback: each robot of interest requires a specialized model that must be trained from scratch. To address this key shortcoming, we propose a novel distance-geometric robot representation coupled with a graph structure that allows us to leverage the sample efficiency of Euclidean equivariant functions and the generalizability of graph neural networks (GNNs). Our approach is generative graphical inverse kinematics (GGIK), the first learned IK solver able to accurately and efficiently produce a large number of diverse solutions in parallel while also displaying the ability to generalize -- a single learned model can be used to produce IK solutions for a variety of different robots. When compared to several other learned IK methods, GGIK provides more accurate solutions with the same amount of data. GGIK can generalize reasonably well to robot manipulators unseen during training. Additionally, GGIK can learn a constrained distribution that encodes joint limits and scales efficiently to larger robots and a high number of sampled solutions. Finally, GGIK can be used to complement local IK solvers by providing reliable initializations for a local optimization process.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月6日
Arxiv
0+阅读 · 2024年5月2日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
29+阅读 · 2017年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年5月6日
Arxiv
0+阅读 · 2024年5月2日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
29+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员