Aiming at optimizing the shape of closed embedded curves within prescribed isotopy classes, we use a gradient-based approach to approximate stationary points of the M\"obius energy. The gradients are computed with respect to Sobolev inner products similar to the $W^{3/2,2}$-inner product. This leads to optimization methods that are significantly more efficient and robust than standard techniques based on $L^2$-gradients.


翻译:为了在规定的等顶级内优化封闭嵌入曲线的形状,我们对M\“obius”能量的大约固定点采用了梯度法。对于Sobolev内产产品,其梯度的计算方法类似于$W3/2/2,2}内产产品。这导致优化方法比基于$L2美元梯度的标准技术更高效、更稳健。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员