Purpose: The purpose of this paper is to propose a tool that generates authority files to be integrated with linked data by means of learning rules. AUTHORIS is software developed to enhance authority control and information exchange among bibliographic and non-bibliographic entities. Design / methodology / approach: The article analyzes different methods previously developed for authority control as well as IFLA and ALA standards for managing bibliographic records. Semantic Web technologies are also evaluated. AUTHORIS relies on Drupal and incorporates the protocols of Dublin Core, SIOC, SKOS and FOAF. The tool has also taken into account the obsolescence of MARC and its substitution by FRBR and RDA. Its effectiveness was evaluated applying a learning test proposed by RDA. Over 80 percent of the actions were carried out correctly. Findings: The use of learning rules and the facilities of linked data make it easier for information organizations to reutilize products for authority control and distribute them in a fair and efficient manner. Research limitations / implications: The ISAD-G records were the ones presenting most errors. EAD was found to be second in the number of errors produced. The rest of the formats --MARC 21, Dublin Core, FRAD, RDF, OWL, XBRL and FOAF-- showed fewer than 20 errors in total. Practical implications: AUTHORIS offers institutions the means of sharing data with a high level of stability, helping to detect records that are duplicated and contributing to lexical disambiguation and data enrichment. Originality / value: The software combines the facilities of linked data, the potency of the algorithms for converting bibliographic data, and the precision of learning rules.


翻译:目的:本文件的目的是提出一种工具,生成权威文件,以便通过学习规则与链接的数据相结合;AUTHORIS是软件,目的是加强文献目录和非文献目录实体之间的权威控制和信息交流;设计/方法/方法:文章分析了以前为权威控制开发的不同方法以及国际法律援助联合会和ALA管理书目记录的标准;对保密网络技术也进行了评估;AUTHORIS依靠Drupal,并纳入了都柏林核心、SIOC、SKOS和FOAF的协议;该工具还考虑到了MARC的陈旧过时及其由FRBR和RDA替代的软件;利用RDA建议的学习测试测试评估了其有效性;80%以上的行动得到了正确执行;结果:使用学习规则和链接数据设施使信息组织更容易将产品用于权威控制并以公平、高效的方式传播;研究限制/影响:ISAD-G记录显示错误最多。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员