We explore covert entanglement generation over the lossy thermal-noise bosonic channel, which is a quantum-mechanical model of many practical settings, including optical, microwave, and radio-frequency (RF) channels. Covert communication ensures that an adversary is unable to detect the presence of transmissions, which are concealed in channel noise. We show that a square root law (SRL) for covert entanglement generation similar to that for classical communication: $L_{\rm EG}\sqrt{n}$ entangled bits (ebits) can be generated covertly and reliably over $n$ uses of a bosonic channel. We report a single-letter expression for optimal $L_{\rm EG}$ as well as an achievable method. We additionally analyze the performance of covert entanglement generation using single- and dual-rail photonic qubits, which may be more practical for physical implementation.
翻译:我们研究了在有损热噪声玻色信道上的隐蔽纠缠生成,该信道是多种实际场景的量子力学模型,包括光学、微波和射频信道。隐蔽通信确保对手无法检测到传输的存在,这些传输被隐藏在信道噪声中。我们证明了隐蔽纠缠生成存在与经典通信相似的平方根律:在玻色信道的n次使用中,可以隐蔽且可靠地生成$L_{\rm EG}\sqrt{n}$纠缠比特。我们给出了最优$L_{\rm EG}$的单字母表达式以及一种可实现的方法。此外,我们分析了使用单光路和双光路光子量子比特进行隐蔽纠缠生成的性能,这些方案在物理实现上可能更具实用性。