This paper provides mathematical analysis of an elementary fully discrete finite difference method applied to inhomogeneous (non-constant density and viscosity) incompressible Navier-Stokes system on a bounded domain. The proposed method consists of a version of Lax-Friedrichs explicit scheme for the transport equation and a version of Ladyzhenskaya's implicit scheme for the Navier-Stokes equations. Under the condition that the initial density profile is strictly away from $0$, the scheme is proven to be strongly convergent to a weak solution (up to a subsequence) within an arbitrary time interval, which can be seen as a proof of existence of a weak solution to the system. The results contain a new Aubin-Lions-Simon type compactness method with an interpolation inequality between strong norms of the velocity and a weak norm of the product of the density and velocity.


翻译:本文从数学角度分析了一种基本完全离散的有限差异方法,该方法适用于封闭域上的不相容(非连续密度和粘度)不压缩的导航-斯托克斯系统。拟议方法包括一个版本的Lax-Friedrichs运输方程清晰计划,以及一个版本的Ladyzhenskaya纳维-斯托克斯方程隐含计划。在初始密度剖面严格离0美元很远的条件下,该方法被证明在任意的时间间隔内非常接近于一个薄弱的解决方案(直至一个子序列),这可被视为系统存在一个薄弱解决方案的证明。结果包含一种新的Aus-Lion-Simon型紧凑方法,在密度和速度产品的强标和弱标之间存在内推不平等。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月13日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年4月13日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
24+阅读 · 2022年2月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员