This paper investigates low-rank structure in the gradients of the training loss for two-layer neural networks while relaxing the usual isotropy assumptions on the training data and parameters. We consider a spiked data model in which the bulk can be anisotropic and ill-conditioned, we do not require independent data and weight matrices and we also analyze both the mean-field and neural-tangent-kernel scalings. We show that the gradient with respect to the input weights is approximately low rank and is dominated by two rank-one terms: one aligned with the bulk data-residue , and another aligned with the rank one spike in the input data. We characterize how properties of the training data, the scaling regime and the activation function govern the balance between these two components. Additionally, we also demonstrate that standard regularizers, such as weight decay, input noise and Jacobian penalties, also selectively modulate these components. Experiments on synthetic and real data corroborate our theoretical predictions.


翻译:本文研究了两层神经网络训练损失梯度中的低秩结构,同时放宽了通常对训练数据和参数的各向同性假设。我们采用尖峰数据模型,其中主体部分可以是各向异性且病态的,不要求数据与权重矩阵相互独立,并同时分析了平均场与神经正切核两种缩放机制。研究表明,输入权重对应的梯度近似为低秩,且主要由两个秩一项主导:一项与主体数据残差对齐,另一项与输入数据中的秩一尖峰对齐。我们刻画了训练数据特性、缩放机制及激活函数如何调控这两个分量的平衡关系。此外,研究还证明标准正则化方法(如权重衰减、输入噪声和雅可比惩罚)也会选择性地调节这些分量。合成数据与真实数据的实验验证了理论预测。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员