Pattern recognition is a fundamental task in continuous sensing applications, but real-world scenarios often experience distribution shifts that necessitate learning generalizable representations for such tasks. This challenge is exacerbated with time-series data, which also exhibit inherent nonstationarity--variations in statistical and spectral properties over time. In this work, we offer a fresh perspective on learning generalizable representations for time-series classification by considering the phase information of a signal as an approximate proxy for nonstationarity and propose a phase-driven generalizable representation learning framework for time-series classification, PhASER. It consists of three key elements: 1) Hilbert transform-based augmentation, which diversifies nonstationarity while preserving task-specific discriminatory semantics, 2) separate magnitude-phase encoding, viewing time-varying magnitude and phase as independent modalities, and 3) phase-residual feature broadcasting, integrating 2D phase features with a residual connection to the 1D signal representation, providing inherent regularization to improve distribution-invariant learning. Extensive evaluations on five datasets from sleep-stage classification, human activity recognition, and gesture recognition against 13 state-of-the-art baseline methods demonstrate that PhASER consistently outperforms the best baselines by an average of 5% and up to 11% in some cases. Additionally, the principles of PhASER can be broadly applied to enhance the generalizability of existing time-series representation learning models.


翻译:模式识别是连续感知应用中的一项基本任务,但现实场景常经历分布偏移,这需要为此类任务学习泛化性表征。对于时间序列数据,这一挑战尤为严峻,因为时间序列还表现出固有的非平稳性——即统计和频谱特性随时间变化。在本工作中,我们通过将信号的相位信息视为非平稳性的近似代理,为时间序列分类的泛化表征学习提供了一个新视角,并提出了一种相位驱动的泛化表征学习框架 PhASER。该框架包含三个关键要素:1)基于希尔伯特变换的数据增强,在保持任务特异性判别语义的同时,使非平稳性多样化;2)独立的幅值-相位编码,将时变幅值和相位视为独立的模态;3)相位-残差特征广播,将二维相位特征通过残差连接与一维信号表征相融合,提供固有的正则化以改进分布不变性学习。在来自睡眠分期、人体活动识别和手势识别的五个数据集上,与13种最先进的基线方法进行的广泛评估表明,PhASER 始终优于最佳基线方法,平均提升5%,在某些情况下提升高达11%。此外,PhASER 的原理可广泛应用于增强现有时间序列表征学习模型的泛化能力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员