Contact-rich manipulation has become increasingly important in robot learning. However, previous studies on robot learning datasets have focused on rigid objects and underrepresented the diversity of pressure conditions for real-world manipulation. To address this gap, we present a humanoid visual-tactile-action dataset designed for manipulating deformable soft objects. The dataset was collected via teleoperation using a humanoid robot equipped with dexterous hands, capturing multi-modal interactions under varying pressure conditions. This work also motivates future research on models with advanced optimization strategies capable of effectively leveraging the complexity and diversity of tactile signals.
翻译:接触密集型操作在机器人学习领域的重要性日益凸显。然而,现有机器人学习数据集的研究多集中于刚性物体,未能充分体现真实操作场景中压力条件的多样性。为弥补这一不足,本文提出了一种专为操作可变形软体物体设计的人形机器人视觉-触觉-动作数据集。该数据集通过配备灵巧手的人形机器人进行遥操作采集,记录了多种压力条件下的多模态交互信息。本研究同时展望了未来研究方向:开发具备先进优化策略的模型,以有效利用触觉信号的复杂性与多样性。