Randomized smoothing has become essential for achieving certified adversarial robustness in machine learning models. However, current methods primarily use isotropic noise distributions that are uniform across all data dimensions, such as image pixels, limiting the effectiveness of robustness certification by ignoring the heterogeneity of inputs and data dimensions. To address this limitation, we propose UCAN: a novel technique that \underline{U}niversally \underline{C}ertifies adversarial robustness with \underline{A}nisotropic \underline{N}oise. UCAN is designed to enhance any existing randomized smoothing method, transforming it from symmetric (isotropic) to asymmetric (anisotropic) noise distributions, thereby offering a more tailored defense against adversarial attacks. Our theoretical framework is versatile, supporting a wide array of noise distributions for certified robustness in different $\ell_p$-norms and applicable to any arbitrary classifier by guaranteeing the classifier's prediction over perturbed inputs with provable robustness bounds through tailored noise injection. Additionally, we develop a novel framework equipped with three exemplary noise parameter generators (NPGs) to optimally fine-tune the anisotropic noise parameters for different data dimensions, allowing for pursuing different levels of robustness enhancements in practice.Empirical evaluations underscore the significant leap in UCAN's performance over existing state-of-the-art methods, demonstrating up to $182.6\%$ improvement in certified accuracy at large certified radii on MNIST, CIFAR10, and ImageNet datasets.\footnote{Code is anonymously available at \href{https://github.com/youbin2014/UCAN/}{https://github.com/youbin2014/UCAN/}}


翻译:随机平滑已成为实现机器学习模型认证对抗鲁棒性的关键技术。然而,现有方法主要采用各向同性的噪声分布(例如在图像像素等所有数据维度上均匀分布),忽略了输入与数据维度的异质性,从而限制了鲁棒性认证的有效性。为克服这一局限,我们提出UCAN:一种利用非各向同性噪声实现通用认证对抗鲁棒性的新技术。UCAN旨在增强现有随机平滑方法,将其从对称(各向同性)噪声分布转换为非对称(各向异性)噪声分布,从而提供更具针对性的对抗攻击防御。我们的理论框架具有普适性,支持多种噪声分布以实现不同$\ell_p$范数下的认证鲁棒性,并适用于任意分类器——通过定制化的噪声注入,保证分类器对扰动输入的预测具有可证明的鲁棒性边界。此外,我们开发了一个配备三种示例性噪声参数生成器的新型框架,以针对不同数据维度优化微调非各向同性噪声参数,从而在实践中实现不同层级的鲁棒性提升。实证评估表明,UCAN在MNIST、CIFAR10和ImageNet数据集上,于较大认证半径下的认证准确率相比现有最先进方法取得显著突破,最高提升达$182.6\%$。\footnote{代码匿名发布于 \href{https://github.com/youbin2014/UCAN/}{https://github.com/youbin2014/UCAN/}}

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
10+阅读 · 2021年2月26日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员