In this paper we present an invariance proof of three properties on Simpson's 4-slot algorithm, i.e. data-race freedom, data coherence and data freshness, which together implies linearisability of the algorithm. It is an extension of previous works whose proof focuses mostly on data-race freedom. In addition, our proof uses simply inductive invariants and transition invariants, whereas previous work uses more sophisticated machinery like separation logics, rely-guarantee or ownership transfer.


翻译:在本文中,我们提供了辛普森四分位算法中三种属性(即数据-记录自由、数据一致性和数据新鲜度)的三个属性的不定证据,这共同意味着算法的线性。这是以前工作的延伸,其证据主要侧重于数据-记录自由。 此外,我们的证据仅使用感化变异和变异性,而以前的工作则使用更先进的机械,如分离逻辑、依赖保证或所有权转让。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员