Privacy and security in Smart Cities remain at constant risk due to the vulnerabilities introduced by Internet of Things (IoT) devices. The limited computational resources of these devices make them especially susceptible to attacks, while their widespread adoption increases the potential impact of security breaches. This article presents a review of security proposals aimed at protecting IoT devices in Smart City environments. The review was conducted by analyzing recent literature on device-level security, with particular emphasis on lightweight cryptography, physically unclonable functions (PUFs), and blockchain-based solutions. Findings highlight both the strengths and limitations of current approaches, as well as the need for more practical, scalable, and resource-efficient mechanisms to ensure user privacy and data protection in IoT ecosystems.


翻译:在智慧城市中,由于物联网设备引入的脆弱性,隐私与安全持续面临风险。这些设备有限的计算资源使其特别容易受到攻击,而其广泛部署则放大了安全漏洞的潜在影响。本文综述了旨在保护智慧城市环境中物联网设备的安全方案。综述通过分析近年来关于设备级安全的文献完成,尤其聚焦于轻量级密码学、物理不可克隆功能以及基于区块链的解决方案。研究结果既揭示了现有方法的优势与局限,也指出了在物联网生态系统中确保用户隐私与数据保护需要更实用、可扩展且资源高效的机制。

0
下载
关闭预览

相关内容

智慧城市(英语:Smart City)是指利用各种信息技术或创新意念,集成城市的组成系统和服务,以提升资源运用的效率,优化城市管理和服务,以及改善市民生活质量。智慧城市把新一代信息技术充分运用在城市的各行各业之中的基于知识社会下一代创新(创新2.0)的城市信息化高级形态,实现信息化、工业化与城镇化深度融合,有助于缓解“大城市病”,提高城镇化质量,实现精细化和动态管理,并提升城市管理成效和改善市民生活质量。关于智慧城市的具体定义比较广泛,目前在国际上被广泛认同的定义是,智慧城市是新一代信息技术支撑、知识社会下一代创新(创新2.0)环境下的城市形态,强调智慧城市不仅仅是物联网、云计算等新一代信息技术的应用,更重要的是通过面向知识社会的创新2.0的方法论应用,构建用户创新、开放创新、大众创新、协同创新为特征的城市可持续创新生态。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员