This article shows how coupled Markov chains that meet exactly after a random number of iterations can be used to generate unbiased estimators of the solutions of the Poisson equation. Through this connection, we re-derive known unbiased estimators of expectations with respect to the stationary distribution of a Markov chain and provide conditions for the finiteness of their moments. We further construct unbiased estimators of the asymptotic variance of Markov chain ergodic averages, and provide conditions for the finiteness of the estimators' moments of any order. If their second moment is finite, the average of independent copies of such estimators converges to the asymptotic variance at the Monte Carlo rate, comparing favorably to known rates for batch means and spectral variance estimators. The results are illustrated with numerical experiments.


翻译:本文展示了如何利用在随机迭代次数后精确相遇的耦合马尔可夫链,来生成泊松方程解的无偏估计量。通过这一关联,我们重新推导了关于马尔可夫链平稳分布期望的已知无偏估计量,并给出了其各阶矩有限的条件。我们进一步构造了马尔可夫链遍历平均渐近方差的无偏估计量,并提供了这些估计量任意阶矩有限的条件。若其二阶矩有限,则此类估计量独立副本的平均值将以蒙特卡罗速率收敛于渐近方差,其表现优于已知的批均值法与谱方差估计量的收敛速率。数值实验验证了上述结果。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员