This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.


翻译:本研究提出自适应密度场(ADF)——一种将空间聚合建模为连续空间中查询条件化、度量诱导的注意力算子的几何注意力框架。通过将空间影响重新阐释为基于物理距离的几何保持注意力机制,ADF融合了自适应核方法与注意力机制的核心概念。该框架借助FAISS加速的倒排文件索引实现可扩展性,将近似最近邻搜索处理为注意力机制的内在组成部分。我们以成都地区航空轨迹分析为案例,通过提取轨迹条件化的影响区域(ZOI),揭示了重复出现的空域结构与局部航迹偏移模式。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员