Recent advancements in Reinforcement Learning with Verifiable Rewards (RLVR) have gained significant attention due to their objective and verifiable reward signals, demonstrating strong performance in reasoning and code generation tasks. However, the potential safety risks associated with RLVR remain underexplored. This paper presents HarmRLVR, the first systematic investigation into the alignment reversibility risk of RLVR. We show that safety alignment can be rapidly reversed using GRPO with merely 64 harmful prompts without responses, causing models to readily comply with harmful instructions. Across five models from Llama, Qwen, and DeepSeek, we empirically demonstrate that RLVR-based attacks elevate the average harmfulness score to 4.94 with an attack success rate of 96.01\%, significantly outperforming harmful fine-tuning while preserving general capabilities. Our findings reveal that RLVR can be efficiently exploited for harmful alignment, posing serious threats to open-source model safety. Please see our code at https://github.com/lyxx2535/HarmRLVR.


翻译:近年来,基于可验证奖励的强化学习(RLVR)因其客观且可验证的奖励信号而受到广泛关注,在推理和代码生成任务中展现出强大性能。然而,与RLVR相关的潜在安全风险仍未得到充分探索。本文提出了HarmRLVR,这是对RLVR对齐可逆性风险的首次系统性研究。我们证明,仅需使用64个不含回复的有害提示,通过GRPO即可快速逆转安全对齐,导致模型轻易遵从有害指令。在涵盖Llama、Qwen和DeepSeek的五个模型上,我们通过实验证实,基于RLVR的攻击将平均有害分数提升至4.94,攻击成功率高达96.01%,显著优于有害微调方法,同时保持了模型的通用能力。我们的研究揭示了RLVR可被高效利用于有害对齐,对开源模型安全构成严重威胁。代码详见https://github.com/lyxx2535/HarmRLVR。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员